PCDD/Fs, Dioxin-like PCBs, and PBDEs in Sediment of Lake Huron and Its Tributaries

Shen L,2, Gewurtz S1,2, Reiner E1, Kolic T1, MacPherson K1, Helm P1, Howell T1, Burniston D3, Brindle I2, Marvin C3
1 Dioxin & Toxic Organics, Ontario Ministry of the Environment, Canada; 2 Faculty of Mathematics and Science, Brock University, Canada; 3 Environment Canada, Canada

Introduction

Sediment surveys were conducted in Lake Huron Basin by the Environment Canada (EC) and the Ontario Ministry of the Environment (MOE) to determine the occurrence and spatial distribution of a variety of persistent organic pollutants (POPs) and to identify potential sources of POPs to the lake. Surficial sediment samples were collected from open-lake areas including Georgian Bay and near-shore monitoring stations (Index Stations) which are located in areas representative of background conditions and in areas where there is a natural integration of the stressors from a large area. Surficial sediment samples were also collected from selected Lake Huron tributaries to investigate river inputs of the POPs to the Lake. This poster presents data on concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs), dioxin-like polychlorinated biphenyls (DLPCBs), and polybrominated diphenyl ethers (PBDEs) in the surficial sediment samples collected from all areas of Lake Huron Basin. This study is the first to report the levels and spatial trends of PBDEs, PCDDs/PCDFs and DLPCBs in Lake Huron sediments on a lake-wide basis.

PCDD/Fs and DLPCBs in Sediment

PCDDs and DLPCBs were detected in most sediment samples collected from the studied area. The WHO-TEQ concentrations of PCDD/Fs were in the range of 0.33 pg/g dry wt to 86 pg/g dry wt. Four stations (LH43, LH84, LH100, and LHT11) were found to have the concentrations higher than the Canadian PEL of 21.5 pg/g TEQs for PCDD/Fs; none exhibited TEQ levels that were higher than the Canadian PEL of 277 ng/g for DLPCBs.

PBDEs in Sediment

PBDEs were measured only in open lake samples. Total concentrations (sum of 17 individual congeners BDE-17, -28, -47, -49, -66, -71, -77, -85, -99, -100-119, -126, -138, -153, -154, -183, and -209) were in the range of 0.67 to 13 ng/g dry wt with a lake-wide average of 4.1 ng/g dry wt. Highest concentrations in the lake were found at sites LH43 and LH100, which had levels of 13 ng/g dry wt and 8.5 ng/g dry wt, respectively.

Sampling Sites

Surficial sediment samples were collected from 30 sites in 2002 (EC, open-lake), 17 index stations in 2002 (MOE, near-shore), and 13 tributaries in 2004 (EC).

Acknowledgements

We thank the technicians and crew of the Canadian Coast Guard Ship Limnos, and Ontario Ministry of the Environment field staff from the Great Lakes Unit and laboratory staff (Vin Khurana and Tereza Gobran) from the Dioxin and Toxic Organics Section.

References

5. www.deq.state.mi.us/documents/deq-LakeHuronPoster.pdf

Conclusions

Concentrations of PCDD/Fs, DLPCBs, and PBDEs in Lake Huron sediments were generally low.

Highest concentrations were observed in open-lake depositional areas (LH43), and in areas influenced by industrialized/urbanized land use (LHT100, LH84, and LHT11). These areas were also characterized by shifts in homologue/congener patterns, compared to sites more characteristic of ambient concentrations.

Figure 1. Sampling sites of Lake Huron sediment survey.

Figure 2. WHO-TEQ concentrations (pg/g dry wt) of PCDD/Fs and DLPCBs in surficial sediment of Lake Huron.

Figure 3. Typical PBDE congener patterns in Lake Huron sediment. Relative abundances are calculated by normalizing congener concentrations to the total concentration of BDE-47, -99, -100, -153, -154, and -183 for that sample.

Figure 4. BDE-209 and PBDE concentrations (ng/g dry wt) in surficial sediment of Lake Huron.

Figure 5. Homologue profiles at the sampling sites whose TEQ values are higher than Canadian PELs of 21.5 pg/g for PCDD/Fs.

Acknowledgements

We thank the technicians and crew of the Canadian Coast Guard Ship Limnos, and Ontario Ministry of the Environment field staff from the Great Lakes Unit and laboratory staff (Vin Khurana and Tereza Gobran) from the Dioxin and Toxic Organics Section.

References

5. www.deq.state.mi.us/documents/deq-LakeHuronPoster.pdf

Conclusions

Concentrations of PCDD/Fs, DLPCBs, and PBDEs in Lake Huron sediments were generally low.

Highest concentrations were observed in open-lake depositional areas (LH43), and in areas influenced by industrialized/urbanized land use (LHT100, LH84, and LHT11). These areas were also characterized by shifts in homologue/congener patterns, compared to sites more characteristic of ambient concentrations.